
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2006; 50:733–750
Published online 30 September 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.1077

An immersed boundary method for incompressible �ows using
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SUMMARY

A simple and e�ective immersed boundary method using volume of body (VOB) function is imple-
mented on unstructured Cartesian meshes. The �ow solver is a second-order accurate implicit pressure-
correction method for the incompressible Navier–Stokes equations. The domain inside the immersed
body is viewed as being occupied by the same �uid as outside with a prescribed divergence-free
velocity �eld. Under this view a �uid–body interface is similar to a �uid–�uid interface encountered
in the volume of �uid (VOF) method for the two-�uid �ow problems. The body can thus be identi�ed
by the VOB function similar to the VOF function. In �uid–body interface cells the velocity is obtained
by a volume-averaged mixture of body and �uid velocities. The pressure inside the immersed body
satis�es the same pressure Poisson equation as outside. To enhance stability and convergence, multigrid
methods are developed to solve the di�erence equations for both pressure and velocity. Various steady
and unsteady �ows with stationary and moving bodies are computed to validate and to demonstrate the
capability of the current method. Copyright ? 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

Recently, numerical methods for solving incompressible �ows on �xed Cartesian grids are
gaining popularity for their relative ease in treating complex immersed bodies [1–8]. In
immersed boundary method [1] the force applied by the elastic �bre to the �uid is com-
puted and added to the �uid equations. In virtual boundary method [2, 3] the e�ect of solid
body on the �ow is modelled by a forcing term governed by a feedback loop that enforces the
no-slip boundary condition at the �uid–solid interface. In these methods [1–3] the force term
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added to the �ow �eld is spread over several grid cells using a delta-function-like distribution
normal to the �uid–solid interface. In the direct-forcing methods [4, 5] the no-slip boundary
condition at the �uid–solid interface is used as a condition to obtain directly the velocity
around and inside the solid body without actually solving the �uid equations. The �ctitious
domain method [6] is a �nite element method that enforces the �uid–body interface boundary
condition in a weak form using Lagrange multipliers. The Lagrange multiplier can be viewed
as a momentum-forcing term similar to the term added in the immersed boundary method.
In Cartesian cut-cell method [7], the �ow variables for the cut cells are solved based on the
actual shape of the merged cut cells. In Reference [8], the solid body is viewed as being made
of a material distinct from the surrounding �uid. The motion of the body is identi�ed and
tracked by a colour function. In the method implemented by Kajishima and Takiguchi [9],
the volume fraction of solid is used to couple the �uid velocity and the solid velocity. This
coupling is written as a forcing term in the momentum equation, which is implemented by a
separate step in a fractional-step method.
Assuming that the motion of the immersed body is known in advance or can be computed

by some structural equations, the di�erences among the above-mentioned methods lie in the
di�erent ways the no-slip boundary condition for the immersed bodies is enforced on a non-
body-conformal Cartesian mesh. The cells surrounding and containing the �uid–body interface
can be viewed as a transition region that connects the �ow solution outside the body to the
known velocity distribution inside the body. The problem can be further simpli�ed by viewing
the body interior as being occupied by same incompressible �uid as outside with a prescribed
divergence-free velocity �eld. In this view a �uid–body interface is similar to a �uid–�uid
interface encountered in the volume of �uid (VOF) method for the two-�uid �ow problems.
The body can thus be identi�ed by the volume of body (VOB) function analogous to the
VOF function. Since the body velocity is assumed incompressible, the pressure �eld inside
the body obeys the same governing equation as the pressure outside. This is the basic idea
we used to develop a simple immersed boundary method using the VOB function. This idea
is similar to the one implemented by Xiao [8] and the one by Kajishima and Takiguchi [9].
However, the actual implementation of the concept is di�erent among these methods.
In this work an implicit fractional step pressure-correction method is �rst developed to solve

the incompressible Navier–Stokes equations on unstructured Cartesian meshes. The method is
second-order accurate both in time and in space. The VOB function is then used as a natural
parameter that relates the �ow velocity outside the body to the known velocity distribution
inside the body. For interface cells containing the �uid–body interface, the velocity is com-
puted by the volume average of the velocity of the two ‘�uids’. In the advection–di�usion step
of the fractional-step method, the VOB-coupled equations for velocity are implicitly integrated
using the technique of sub-iteration. In the pressure-correction step, the pressure-correction
Poisson equation applies to the entire computational domain regardless of the cell type. The
capability of local re�nement on unstructured Cartesian grid is advantageous to enhance the
resolution around the �uid–solid interface. For stable and fast convergence, implicit multigrid
methods are developed to solve the di�erence equations for both pressure and velocity. Note
that the current implementation for the coupling between �uid and body velocity is di�erent
form the procedure in References [8, 9], where an explicit fractional step is performed for the
velocity coupling. To test the validity of the current method, the steady and unsteady �ows in
a driven cavity and over a circular cylinder are computed and compared with the published
data. Finally, the wake �ow of an impulsively started cylinder and a cylinder oscillating inline
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with the free stream are computed to demonstrate the capability of the present method to treat
moving bodies.

IMPLICIT PRESSURE-CORRECTION METHOD

The incompressible Navier–Stokes equations are

∇ · v=0
@
@t

∫
CV
v dV +

∮
CS
vv · dS−

∮
CS

1
Re

∇v · dS+
∮
CS
P dS=0

(1)

where v and P are Cartesian velocity vector and pressure; Re is Reynolds number; CV is the
control volume considered and CS is the boundary surface of CV. Applying the Divergence
theorem and adapting the backward time di�erencing scheme, the momentum equation with
the pressure �xed at time level n can be written as(

c1v∗ − c2vn + c3vn−1
�t

+R∗ +∇Pn
)
�V =0 (2)

where the superscript ‘*’ represents the intermediate state; ‘n’ represents the current time
level; �V is the volume of the considered cell; �t is the time increment; R represents the
volume integral of convection and the viscous �uxes. The constants are c1 = 1:5, c2 = 2 and
c3 = 0:5 for the second-order accurate backward di�erence scheme, and c1 = 1, c2 = 1 and
c3 = 0 for the �rst-order Euler implicit scheme. The intermediate velocity v∗ generally does
not satisfy the divergence-free condition. The velocity and the pressure are corrected by the
following steps:

vn+1 = v∗ −�t∇�n

Pn+1 = Pn + �n
(3)

where � is the pressure correction. By requiring vn+1 be divergence free, we obtain the Poisson
equation for the pressure correction:

∇2�n − ∇ · v∗

�t
=0 (4)

Equations (2)–(4) constitute the implicit fractional step pressure-correction method used in
this work.

FINITE VOLUME DISCRETIZATION

A cell-centred �nite volume method on unstructured Cartesian grid is developed in this work.
The �ow variables v and P are stored at the centre of the cell volume. The �ow states at a cell
vertex are obtained by averaging the surrounding centre values with the weighting constant
proportional to the inverse of the distance to the particular centre. The variable gradients at
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the cell centre are obtained by di�erencing the vertex values of the particular cell. The left and
right variable states at a cell-face centre are linearly reconstructed from the immediate centre
values using the estimated gradient information. The mean variable states at the cell-face
centres are then obtained by a simple average of the face values:

vMf =0:5(v
L
f + v

R
f ); PMf =0:5(P

L
f + P

R
f ) (5)

where the sub-script f represents the face index; the superscripts M, L and R represent the
mean, left and right states of face f. The convection �ux Rconv is computed as

Rconv =
1
�V

∑
CS

[
u

v

]
L=R

vMf · n̂�S (6)

where �S is the face area; n̂ is the unit surface normal pointing outward; and the summation
operator is done over all surfaces of the cell. The sub-script L=R represents the velocity
upwinding:

(•)L==R =
{
(•)L if vMf · n̂¿0
(•)R if vMf · n̂60

(7)

The pressure gradient at the cell centre is computed as

∇P= 1
�V

∑
CS
PMf n̂�S (8)

The viscous �uxes Rvis are computed as

Rvis =
1

Re�V
∑
CS

[∇u
∇v

]
· n̂�S (9)

where u and v are the Cartesian velocity components. The velocity gradients at the cell-face
centres are obtained by di�erencing the neighbouring cell-centre values. On a regular Cartesian
grid, formulations (6)–(9) are second-order accurate spatial di�erence schemes for inviscid
and viscous �ux terms in Equation (2).

FACE-NORMAL VELOCITY

To compute the divergence of velocity, a face-normal velocity Uf is de�ned independently
for each cell face, which is di�erent from the cell-centre velocity. Speci�cally, for a cell face
f with surface unit normal n̂, the intermediate state of the face-normal velocity is de�ned as

U ∗
f = v

M
f · n̂− cdisp �t

�‘
(PRf − PLf )ê · n̂ (10)
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where �‘ is the distance between the right and the left neighbouring cell centres; ê is the
Cartesian unit vector normal to the face; cdisp is an input constant for the pressure dissipation.
The divergence of the intermediate velocity for a particular cell is computed as

∇ · v∗ =
1
�V

∑
CS
(U ∗

f �S)

=
1
�V

∑
CS
vMf · n̂�S − cdisp�t

�V
∑
CS

PRf − PLf
�‘

ê · n̂�S (11)

The last term on the right-hand side of Equation (11) is a background dissipation term based
on the pressure �eld. On a regular Cartesian grid it can be shown that this dissipation is
proportional to cdisp(a�x2(@4P=@x4) + b�y2(@4P=@y4)) where a and b are some constants.
It has similar e�ects as the widely used momentum interpolation method [10]. Note that in
Equation (10) the dissipation term is written in a simple form suitable for unstructured meshes.

PRESSURE-CORRECTION POISSON EQUATION

The intermediate face-normal velocity is corrected similarly as the cell-centre velocities by

U n+1
f =U ∗

f −�t(∇�n)f · n̂ (12)

where the gradient of pressure correction is computed at the cell-face centre. By demanding
U n+1
f be divergence free, a discrete Poisson equation for the pressure correction is con-
structed as

1
�V

∑
CS
(∇�n)f · n̂�S − 1

�t�V
∑
CS
U ∗
f �S=0 (13)

Equation (13) is a compact discretization of Equation (4). It is used to compute the pressure
correction �n at the cell centres, which in turn determines the cell-centre pressure and velocity
at the new time level n+ 1 in Equation (3).
It should be mentioned that in References [5, 7] the desired pressure–velocity coupling is

achieved by Equations (12) and (13) without the explicit addition of pressure dissipation
in Equation (10). In this work we kept the dissipation term in Equation (10) as an extra
means to control the possible pressure oscillation around the body surfaces. It should also be
noted that in References [5, 7] the divergence-free U n+1

f is used to replace the term vMf · n̂ in
Equations (6) and (7) to compute the convection �uxes in the next time step. We chose not
to do so because U n+1

f depends explicitly on the chosen �t.

TREATMENT OF IMMERSED BODY

The position and the velocity vB of the immersed bodies are assumed known from some
appropriate governing equations. For the forced body motion examined in this work, we use
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a level set function �L de�ned on the cell vertices to track the location of the immersed
bodies. We chose �L to be a signed distance function whose absolute value equals the shortest
distance to the body surface. It is de�ned �L¿0 outside the body, �L¡0 inside, and �L =0
on the body surface. With �L known, the volume fraction occupied by the immersed body
in a cell, or the VOB function �B, can be computed easily. The VOB function is used to
identify the body cells (�B =1), the �uid cells (�B =0) and the interface cells (0¡�B¡1).
For convenience, the body surface is represented by the contour of �B =0:5 or �L =0. Since
the velocity inside the body surface is known, we modify Equation (2) to

(1− �B)�V
(
c1v∗ − c2vn + c3vn−1

�t
+R∗ +∇Pn

)
+ �B�V

(
c1v∗ − c1vn+1B

�t

)
=0 (14)

Equation (14) recovers Equation (2) for �uid cells, and it yields v∗= vn+1B for body cells.
As for interface cells, the solution of Equation (14) is a volume-averaged mixture of the
body velocity and the velocity computed by the �ux conservation. This volume averaging
is a simple and e�ective treatment to connect the �ow solution in �uid cells to the bound-
ary condition (vn+1B ) in body cells. Note that the VOB-averaged interface variables satisfy
Equation (14) instead of Equation (2). Thus, interface cells should be excluded from the
residual computation. Equation (14) is di�erent from the velocity-coupling step in References
[8, 9].
Note that the boundary contour of the domain occupied by all body cells with �B =1 is a

closed stair-step-like zigzag contour. The volume averaging of velocity in interface cells has
the e�ect of smoothening the stair-step representation of the body surface. The true location
of the body surface is embedded in the interface cells with an uncertainty of one cell size.
In this work the capability of local re�nement on unstructured Cartesian grid is developed,
which is useful to enhance the grid resolution around the body surface.
In essence, the domain inside the body surface is viewed as being occupied by same

�uid as outside with a prescribed incompressible velocity distribution. In this view, there is
no property jump across the body surface, and the pressure inside the body surface obeys
the same governing equation as outside. Thus, the Poisson equation for pressure correction,
Equation (13), is used for the entire computational domain without distinguishing the cell
type. When the given vn+1B is divergence free, the source term of Equation (13) is zero
automatically. The pressure inside the body is of no physical meaning. The elliptical nature
of the Poisson equation ensures that the pressure �eld inside the body adjusts itself according
to the pressure �eld outside.
To compute the forces acting on the body, the surface integral of the pressure and viscous

stresses over the closed body surface is transformed into a volume integral using the Gauss
theorem. Speci�cally, the total force acting on the immersed body is obtained by

fBody =
∑
cell
�B�V

(
−∇P + 1

Re
∇2v

)
(15)

Note that the surface normal direction is automatically determined by the distribution of VOB
function �B.
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IMPLICIT INTEGRATION OF ADVECTION–DIFFUSION STEP

Applying the Newton’s method to Equation (14) and writing it in delta-law form, the implicit
time integration equation of intermediate velocity can be written as

(
c1�V
�t

+ (1− �B)�V @R@v
)
(vs+1 − vs)

= −
{
(1− �B)�V

(
c1vs − c2vn + c3vn−1

�t
+Rs +∇Pn

)
+ �B�V

(
c1vs − c1vn+1B

�t

)}

=Ress (16)

where the superscript s is the index for sub-iteration, and Ress is the right-hand residual.
Equation (16) can be further represented by

[LHS](vs+1 − vs) =−{RHS(vs)− Source}

=Ress (17)

where −(RHS) is the right-hand side operator involving only the current velocity vector vs;
‘Source’ represents all terms involving known states of pressure Pn, velocity vn, vn−1 and vn+1B
in the residual; LHS is the Jacobian matrix of RHS. When the sub-iteration in s converges,
the solution is vs+1 = v∗, satisfying the time-accurate Equation (14). Note that term ‘Source’
is constant during the sub-iteration. In operator LHS, the �rst-order upwind scheme is used
for the convection �ux Jacobian and the compact di�erence operator is used for the viscous
�ux Jacobian. With these simpli�cations, the stencil of LHS extends only to the neighbouring
cell centres while the right-hand side operators are kept second-order accurate.
Splitting LHS into the sum of a diagonal part D, a lower triangular part L and an

upper triangular part U , a two-step approximate LU factorization method is used to invert
Equation (17) approximately as

!U�vs−1 + (D+!L)�vs∗ =!(2−!)Ress

!L�vs∗ + (D+!U )�vs =!(2−!)Ress

vs+1 = vs +�vs

(18)

where ! is a relaxation parameter, and here we take 0:96!61. The initial conditions are
vs= vn and �vs−1 = 0 for s=1.

MULTIGRID METHOD FOR VELOCITY

It is our experience that the convergence rate of Equation (18) will deteriorate for highly
re�ned grids. Thus, to accelerate the convergence, a V-cycle multigrid method is developed
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on unstructured Cartesian grid for Equations (17) and (18). An unstructured Cartesian grid
with local re�nement is generated from an initial cell (parent cell) that covers the entire �ow
�eld. This initial cell is recursively sub-divided into 4 identical children cells (8 children cells
in 3D) until su�cient spatial resolution around the body surface is reached. The tree structure
among the parent cells and their children cells provides a natural sequence of grid coarsening
from �ne to coarse grids. For simplicity, we describe below only a two-level multigrid cycle.
On the coarse grid, the equation to be solved is

−{RHSC(vC)− SourceC}=0
SourceC = [RHSC(J CF v

F) + ICF Res
F]

(19)

where the super- and the sub-script F and C represents the �ne grid and the coarse grid
variables or operators, respectively. The injection operator J CF for velocity conserves v�V .
The injection operator ICF for residual vector conserves the surface integrals of convection and
viscous �uxes. The operator RHSC on the coarse grid is theoretically equivalent to the operator
RHS in Equation (17) on the �ne grid. But simpli�cation is achieved by using only �rst-order
upwind di�erence for the convection �uxes on coarse grids of all levels. Note that the constant
‘Source’ term in Equation (17) on the �ner grid is not present in the coarse grid equation.
Equation (19) has exactly the same form as the right-hand side of Equation (17). Applying
again the Newton’s method to Equation (19), an implicit integration equation equivalent to
Equation (17) can be constructed on the coarse grid, and then solved for vC by the same
relaxation method as described by Equation (18).
When Equation (19) has been resolved for vC, the prolongation operator J FC transfers the

estimated correction from the coarse grid back to the �ner grid by

vF; s+1 = vF + J FC (v
C − J CF vF) (20)

where J CF v
F is the initial velocity vector injected from the �ne grid; and J FC is the prolongation

operator. In this work a simple prolongation that assumes a constant distribution in the parent
cell is used. Speci�cally, a parent (coarse) cell transfers the calculated correction evenly to
all its children (�ne) cells. On the �nest grid (terminal grid), the body cells with �B =1 are
excluded from the prolongation procedure.

IMPLICIT RELAXATION AND MULTIGRID METHOD FOR PRESSURE
CORRECTION

Applying the Newton’s method to Equation (13), the implicit relaxation method can be writ-
ten as

∇2�V (�s+1 − �s) =−
{∑

CS

(∇�s)f · n̂�S − 1
�t

∑
CS

U ∗
f �S

}

=Ress� (21)
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where s is the index for sub-iteration. When the iteration in s converges, the solution is
�s+1 =�n, which satis�es the Poisson equation, Equation (13). The left-hand side operator
is a compact Laplacian operator whose stencil extends only to the neighbouring cell centres.
Equation (21) can be further represented by

[LHS�](�s+1 − �s) =−{RHS(�s)− Source�}

=Ress� (22)

where the term Source� is related to the divergence of velocity �eld. Note that this equation is
in the same form as Equation (17). Hence, similar to the method described above, an implicit
relaxation method and a V-cycle multigrid method are developed to solve Equation (22). The
initial conditions are �s=0 and ��s−1=2 = 0 for s=1.

ORDER ANALYSES FOR FRACTIONAL-STEP METHOD

In the following sections, we present some validation results for the current methodology. All
computations are done on a personal computer with single precision. The analytical solutions
of decaying vortices [11] are used for order analyses:

u(x; y; t) =− cos(�x) sin(�y)e−2�2t=Re

v(x; y; t) = sin(�x) cos(�y)e−2�
2t=Re

P(x; y; t) =−cos(2�x) + cos(2�y)
4

e−4�
2t=Re

(23)

Here we take −0:56x, y60:5 and Re=10. Exact solutions are used as initial and boundary
conditions. The implicit backward di�erencing scheme is used for time integration. To start
the time integration at n=0, the second-order trapezoidal rule is used as a starter such that
no initial condition at n= − 1 is required.
For time accuracy test, the regular Cartesian grid spacing is �xed at �x=0:0078125 and

the time increment is varied among �t=0:1; 0:05; 0:025, and 0.0125. The solution at t=0:3
is compared with the exact solution, and the maximum error in u is plotted in Figure 1(a).
To show the spatial accuracy, the time step is �xed at �t=0:003 and the grid spacing is
varied among �x=1=128; 1=64 and 1=32. The solutions at t=0:3 are compared with the
exact solution, and the maximum error in u is plotted in Figure 1(b). It is seen that the
current method is a second-order method both in time and in space.

DRIVEN CAVITY FLOWS

The numerical solutions of driven cavity �ows obtained by Ghia et al. [12] are used to test the
steady state computation of the present method. A Cartesian grid of size 128× 128 is used to
discretize a square cavity of unit length in size. The upper wall is moving to the right at unit
speed. For the case of Re=3200, the time step is set to �t=0:15 and arti�cial dissipation is
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Figure 1. Decaying vortices test, Re=10: (a) time accuracy; and (b) spatial accuracy.
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Figure 2. Driven cavity, Re=3200: (a) convergence history of the maximum norm of steady state
residual; and (b) u(y) and v(x) along centrelines, lines: computed, symbols: Ghia et al. [12].

set to cdisp=0:1. The maximum CFL number in the computation is about 15. The maximum
norm of the steady state residual, or the terms in Equation (14) without involving �t, dropped
more than four orders of magnitude to 1× 10−8 in 1100 steps of �ne grid variable update and
reached machine zero in about 2000 steps, as shown in Figure 2(a). The velocity component
in x direction along the vertical centreline, u(y), and the velocity component in y direction
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Figure 3. Driven cavity, Re=10 000: (a) u(y) and v(x) along centrelines, lines: computed, symbols:
Ghia et al. [12]; and (b) streamlines.

along the horizontal centreline, v(x), are plotted in Figure 2(b). The comparisons with the
results obtained by Ghia et al. [12] who also used 128× 128 grid are very good. For the case
of Re=10000, the time step is set to �t=0:1 and arti�cial dissipation is set to cdisp=0:2.
The maximum CFL number in the computation is about 10. In this case the convergence slows
down considerably. The maximum norm of the steady state residual dropped more than four
orders of magnitude to 1× 10−8 in 5000 steps and reached machine zero in about 8000 steps.
Figure 3(a) shows the computed velocity pro�les u(y) and v(x) along vertical and horizontal
centrelines, respectively. The comparisons with Ghia et al. [12] who used a 256× 256 grid
are satisfactory. The computed streamlines for Re=10000 case are plotted in Figure 3(b),
showing one primary vortex in the centre, one secondary vortex (TL1) on the top side of
the left wall, one secondary vortex (BR1) and one tertiary vortex (BR2) in the bottom right
corner, one secondary vortex (BL1) and one tertiary vortex (BL2) in the bottom left corner.
Note that the vortex BL2 has a size of two to three cells only. In Reference [12] another
quaternary vortex BR3 was shown on the bottom right corner. In this work the vortex BR3
was not captured because only a 128× 128 was used.

FLOWS OVER A STATIONARY CIRCULAR CYLINDER

To test the model for the immersed bodies, the steady and unsteady �ows over a circu-
lar cylinder of unit diameter are computed on unstructured Cartesian grids. The grid is re-
�ned around the cylinder surface such that there are about 384 interface cells. The cylinder
volume computed by summing up �B�V is 0.7853632, which is about 0.01% less than the
true value of 0:25�. The outer boundaries are 30 diameters away from the origin. The uniform
�ow condition is set to the in�ow boundary and the two boundaries in y. The downstream
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Figure 4. Flows over a stationary circular cylinder, Re=40, streamlines.

boundary follows the upwind di�erenced equation of (@v=@t) + Un(@v=@x)=0, where Un is
the computed normal out�ow velocity at the boundary.
For the steady case of Re=40, the Euler implicit method is used with the maximum

CFL number around 25. The in�nity norm of the steady state residual for �B =0 cells, or
the terms in Equation (14) without involving �t, dropped four orders of magnitude in 500
steps. The computed streamlines are plotted in Figure 4. For convenience, the contour of
�L =0 is displayed as the cylinder wall. The �ow is steady with a separation bubble be-
hind the cylinder. The streamlines around the cylinder are smooth, indicating the e�ects of
the interface cells in smoothening the zigzag representation of the cylinder surface. Figure
5(a) shows the computed pressure contours. Note that the pressure inside the cylinder ad-
justs itself automatically to the pressure �eld outside. The pressure contours intersect the
cylinder wall in a nearly orthogonal manner. To examine the surface pressure distribution,
the pressure coe�cient at the intersection of the cylinder surface and the grid lines is inter-
polated using the surrounding centre values and plotted in Figure 5(b). The data measured
from Reference [13] are also included for comparison. The two results generally agree with
each other very well. The current computation predicted a slightly lower surface pressure
distribution on the leeward surface. Note that the computed surface pressure has only very
minor wiggles around the shoulder region. It would show zigzag oscillation if the dissipation
term in Equation (10) was turned o�. Here, a constant cdisp=0:1 is used to minimize such
oscillations.
Table I lists the computed lift (Cl) and drag (Cd) coe�cients using Equation (15) and

the wake length (Lw) normalized by the diameter (d). The computed results for the case of
Re=20 are also listed. The comparison with the work of others is generally satisfactory.
For the unsteady case of Re=200, the second-order backward di�erence scheme is used.

The time increment is chosen such that the expected vortex shedding cycle takes about 50
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Figure 5. Flows over a stationary circular cylinder, Re=40: (a) Cp contours; and (b) surface Cp
distribution, symbol: computed, line: data taken from Fornberg [13].

Table I. Simulation results for �ows over a circular cylinder.

Methods Re Cd Lw=d Cl St

Current 20 2.01 0.85 8× 10−6

Fornberg [13] 20 2.00 0.91
Ye et al. [7] 20 2.03 0.92
Current 40 1.50 2.13 3× 10−6

Fornberg [13] 40 1.50 2.24
Ye et al. [7] 40 1.52 2.27
Current 200 1:27± 0:04 ±0:60 0.20
Kiris and Kwak [14] 200 1:27± 0:04 ±0:67 0.184

time steps to complete. The instantaneous streamlines at certain instant in the periodic vortex
shedding process are plotted in Figure 6(a). Figure 6(b) shows the vorticity contours. The
unsteady vortex shedding behind the cylinder is clearly seen. The computed aerodynamic
coe�cients and the Strouhal number (St) based on the lift coe�cient are listed in Table I.
The comparison with the work of others is generally satisfactory. Note that in Reference [14],
various computational and experimental results for Re=200 case were listed. The listed Cl
ranged from ±0:5 to ±0:7; Cd ranged from 1:17±0:0005 to 1:58±0:0035 and St ranged from
0.16 to 0.227.

IMPULSIVELY STARTED CYLINDER

To test the applicability of the present method to the �ow �eld with moving body, the case
of an impulsively started cylinder was computed and compared with the experimental data by
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Figure 6. Flow over a stationary cylinder, Re=200: (a) instantaneous
streamlines; and (b) vorticity contours.

Bouard and Coutanceau [15]. The cylinder was initially at rest and was suddenly moved to the
left at a constant speed. The Reynolds number based on the cylinder diameter D and cylinder
speed Ucyl is 550. The mesh is clustered along the path of the cylinder movement such that
there are always about 312 interface cells around the cylinder. During the computation of 600
time steps, the cylinder was moved a distance of 3 diameters from its initial position. Figure 7
shows the time-dependent development of velocity along the symmetry axis in the wake. In
this �gure the velocity u was measured relative to the moving cylinder and normalized by the
cylinder speed Ucyl. The distance x=D along the symmetry axis was referenced relative to the
cylinder centre. The symbols in Figure 7 are measured manually from the experimental points
in Bouard and Coutanceau [15], while the lines are from our computation. Di�erent symbols
correspond to di�erent time ts= tUcyl=D with an increment of 0.5, starting from ts=0:5. The
agreement between computation and experiment is generally satisfactory. Figure 8 shows the
computed instantaneous streamlines at ts=3:0. A pair of isolated secondary vortex between
the shoulder and the rear stagnation can be clearly seen. This is in good agreement with the
experimental observation of Bouard and Coutanceau [15]. This example basically has validated
the capability of the present method to treat moving bodies in the �ow �eld.

FLOW OVER AN OSCILLATING CYLINDER

This computation was performed at Re=200 with the cylinder oscillating in parallel to the
free stream velocity. The cylinder was forced to oscillate at a frequency fe=1:5St, that is, 1.5
times the Strouhal (St) number for the vortex shedding over a stationary cylinder. The centre
of the cylinder moves along the x-axis harmonically like xc =A sin[2�fe(t − ts) + 0:5�] with
an amplitude A=0:24d and ts is the time the oscillation starts. The velocity of the cylinder is
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Figure 8. Impulsively started cylinder, Re=550; ts=3:0, instantaneous streamlines.

uB =2�feA cos[2�fe(t − ts) + 0:5�]. The initial condition at t= ts is the solution for the �ow
over a stationary cylinder with its centre at xc = 0:24d.
Figure 9 shows the vorticity contours in sequence over two oscillation periods (2T ) of the

cylinder. The vortex shedding pattern of the stationary case (Figure 6) is modi�ed by the
oscillation of the cylinder. For the chosen oscillation frequency, the vortex-shedding pattern
is in anti-symmetrical A-III mode, according to the experimental observation of Ongoren and
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Figure 9. Circular cylinder oscillating in parallel to the free stream, Re=200, oscillation fre-
quency fe=1:5St, oscillation amplitude A=0:24d: (a) t=6=25T ; (b) t=13=25T ; (c) t=19=25T ;

(d) t=25=25T ; (e) t=31=25T ; (f) t=38=25T ; (g) t=44=25T ; and (h) t=50=25T .
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Rockwell [16]. There are three vortices being shed from the cylinder and the whole shedding
process takes two oscillation periods to complete. In Figures 9(g), (h), (a)–(d), two clockwise
vortices shed from the top of the cylinder, while in Figures 9(c)–(g) one counter-clockwise
vortex shed from the bottom of the cylinder. One of the clockwise vortices (the one shed in
Figures 9(c) and (d)) moves downstream along a path above the cylinder, while the other
clockwise vortex (the one shed in Figures 9(h), (a) and (b)) pairs with the counter-clockwise
one to form a vortex pair, moving downstream in a lower position. This vortex street pattern
is in good agreement with the experimental observation of Ongoren and Rockwell [16].
Figure 10 shows the record of the lift coe�cient. For the �rst 1225 iterations in Figure 10,

the cylinder is stationary with its centre at xc = 0:24d. Then the inline oscillation starts at ts
with a new time increment that takes about 100 iterations to complete one period of oscillation.
Note that the record in Figure 10 is smooth before and after the transition from a stationary
cylinder to an oscillating cylinder. The FFT analysis for the record after ts gives a major
peak at fe and some minor peaks at the multiples of 0:5fe. This example has validated the
capability of the present method to handle large body movement.

CONCLUSIONS

A simple and e�ective immersed boundary method has been developed and validated for
incompressible �ows. The basic idea is to view the domain inside the solid body as being
occupied by the same �uid as outside with a prescribed divergence-free velocity distribution.
The �ow solver is a second-order accurate implicit fractional-step method on unstructured
Cartesian meshes. The convection �uxes are calculated by a MUSCL-type upwind scheme and
the viscous �uxes by a central di�erence scheme. The volume of body (VOB) function is used
as a natural parameter that relates the �ow solution outside the body to the known velocity

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:733–750



750 D. PAN

distribution inside the body. The velocity at the interface cell is a volume-averaged mixture of
the known body velocity and the velocity estimated by the conservation equations. The same
pressure Poisson equation is used for the entire computational domain without distinguishing
the cell type. A background dissipation proportional to the forth derivative of pressure is added
to minimize the pressure oscillation around the body surface. Implicit multigrid methods are
developed to solve the di�erence equations for both pressure and velocity. The computations of
driven cavity �ows and �ows over a circular cylinder show good comparisons with the work
of others. Finally, the wake �ow of an impulsively-started cylinder and the vortex shedding
patter over a cylinder oscillating inline with the free stream are computed to validate the
capability of the present method to treat moving bodies.
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